Nutrition Strategies to Maximize Mitochondrial Function for Health, Performance, and Longevity

Emily Werner, PhD, RD, CSSD

Disclosure

I disclose the following financial relationships

Team Dietitian Philadelphia 76ers Nutrition Affairs
 Amazentis SA
 (parent company of Timeline Nutrition)

All interests for this individual have been mitigated

Objectives	1	1 Why should we care about mitochondria?		
	2	How does aging affect our mitochondria?		
	3	How do we keep our mitochondria vibrant? 1. Diet		
		 Exercise Supplements 		
	4	What nutrition strategies are available for optimizing mitochondrial health?		
		 NMN CoQ10 Urolithin A 		

Muscle Aging Starts In Our 30s

Age-Related Decline In Muscle Function: A Tremendous Unmet Need

There are ~56 million people 65 years and older projected by 2020 in the US alone

Worldwide, there will be more than 1 billion people over 65 years old by 2030

**US Censes 2014 est. in 2020 *JAGS Vol 52, 80-85, 2004

Mitochondrial Origin of Aging

Mitochondria

Decline in mitochondrial health & function

Cell

Age-associated cellular decline

Organ Weakened organ or system (e.g. muscle)

Body

Decline in function & onset of health issues (e.g. fatigue, reduced strength & mobility)

AGING

Biological Hallmarks of Aging

- 1. Genomic Instability
- 2. Telomere Attrition
- 3. Loss of Proteostasis
- 4. Deregulated Nutrient Sensing
- 5. Altered Intracellular Communication
- 6. Cellular Senescence
- 7. Stem Cell Exhaustion
- 8. Epigenetic Alterations
- 9. Mitochondrial Dysfunction
- 10. Decline in Macroautophagy (e.g. Mitophagy)
- **11. Chronic Inflammation**
- 12. Gut Microbiome Dysbiosis

Mitochondria Are The Bedrock Of Good Health

- Healthy cells rely on healthy mitochondria.
- Optimal function optimizes health and is particularly essential to heart, kidney, eye, brain and muscle function.

Mitochondrial Upkeep

Diet

Exercise

Supplements

Mitochondrial Optimization Through Diet

Intermittent fasting

Many different definitions and approaches

Antioxidants & polyphenols

Over 8000 polyphenols with a wide range of bioavailability and effectiveness

Mitochondrial Optimization Through Exercise

Endurance training triggers biogenesis = more mitochondria*

The more mitochondria you have, the more energy you produce

HIIT training increases respiration = more efficient mitochondria**

*Donato DMD, et al. *American Journal of Physiology-Endocrinology and Metabolism*. 2014 **Huertas JR, et al. *Oxidative medicine and cellular longevity*. 2019

Mitochondrial Optimization Through Supplements

FDA: "Dietary supplements are intended to add to or supplement the diet and are different from conventional food."

Vitamins, minerals, macronutrients, ergogenic aids and other metabolites

- Unregulated by the FDA for safety & efficacy
- Third-party testing crucial
- Look for certification label

Mitochondrial Optimization Through Supplements

1

Nicotinamide Mononucleotide (NMN)

- Shade, C. Integrative Medicine. 2020
- Liao, B., et al. *JISSN*. 2021
- Yoshino, M., et al. Science. 2021
- Akasaka et al. Geriatric Gerontology Int. 2023
- Methuselah Foundation. 2022

What is NMN?

- Bioactive nucleotide
- Formed naturally in the body
- Found in fruits and vegetables (in small amounts)
 - Foods high in B₃ (nicotinamide)
 - Broccoli, avocado, tomato contain more than raw beef
- Building block for NAD+
 - NAD+ is a vital coenzyme for sirtuins and metabolism
 - Proteins critical to DNA expression and aging

Why is NAD+ important?

- NAD+ participates in >50% of all physiologic processes
 - Mitochondrial biogenesis, oxidative stress alleviation, etc

Increasing NAD+ levels leads to boosted energy production and cellular repair

Why should we care about NMN?

Both NMN levels and the conversion of NMN to NAD+ decline with age

NAD+ levels drop to approx. ¹/₂ by middle-age

Levels of the enzyme that catalyses the conversion of nicotinamide (B3) to NMN also decreases with age

NMN supplementation in mice has shown:

NMN Supplementation in Humans has Shown:

- No differences in BMI or %BF, no changes in HRmax, RERmax, HRR, o2-pulse, peak power or workload, or VO2max overall for any dose in amateur, healthy runners over 6 weeks
- Increased muscle insulin sensitivity, insulin signaling and remodeling in overweight or obese women with prediabetes
- No improvement in grip strength or walking speed in older males with diabetes and impaired physical performance

NMN is No Longer Readily Available

- As of October 2022, FDA has banned NMN sale as a supplement
 - A drug developer is asking FDA to approve NMN as a drug
 - Protects production of NMN from the unregulated space of supplements
 - Can no longer be sold as a supplement

COQ₁₀

- Drobnic F, et al. *Nutrients*. 2022
- Gutierrez-Marisacal et al. Int. J of Molecular Sciences. 2020
- Mantle et al. Antioxidants. 2020
- Mantle et al. Int. J of Molecular Sciences. 2023

Ubiquinone vs. Ubiquinol vs. CoQ₁₀

Coenzyme Q₁₀ (CoQ₁₀)

Ubiquinone = oxidized form of CoQ10

Primary form found within the body

Ubiquinol = reduced form of ubiquinone

Ubiquinol is 6-10x more bioavailable than ubiquinone

Constant inter-conversion between two forms

Ubiquinol is not "active" form of CoQ₁₀

What is CoQ₁₀?

Only lipid-soluble antioxidant produced in the body

- Found in all subcellular compartments in various quantities across tissues
- All cells except red blood cells have the capacity to manufacture it

Approx. 50% of CoQ10 found in mitochondria

Transported in blood as ubiquinol bound to LDL and VLDL

What does CoQ₁₀ do?

Cofactor in mitochondrial respiration

 Shuttles electrons and protons into electron transport chain

Powerful lipophilic antioxidant

- Protects DNA and lipid peroxidation
- Stabilizes phospholipid cell membranes
- Recycles vitamins C and E
- Reduces inflammatory markers (e.g., creatine kinase)

Supplementation with CoQ₁₀ in humans has shown:

Benefits for patients with dyslipidemia

Reduced triglycerides and total cholesterol, increased HDL Benefits for patients with hypertension & COPD

Direct effect on endothelium with improvement of smooth muscle activity & reduced inflammation

Benefits for patients with chronic heart failure & myocardial infarction

Reduced rate of major adverse events

Supplementation with CoQ₁₀ in humans has shown:

Benefits for patients with non-alcoholic fatty liver disease

Reduced levels of AST and GGT, TNF-α, & hs-CRP Potential benefits for patients with neurodegenerative conditions

- Reduced oxidative stress
- Poor diffusion through BBB in animal models

Potential benefits for athletes

- Anti-inflammatory activity could benefit highly active
 - No benefit observed in moderately active or sedentary
- Anti-inflammatory effect would be protective and aid recovery, not directly benefitting performance

Supplementation with CoQ₁₀

Ubiquinone used more often in RCTs

Ranges in studies from 100 to 1200mg/day

 Some studies suggest 2400mg divided into 3 doses throughout the day for those who are deficient

Estimated daily requirement from endogenous or exogenous sources is 500mg

- Based on average turnover time of 4 days in tissue
- Approx. 5mg ingested from food per day

Issues with CoQ₁₀ Bioavailability

Water-insoluble

- Cannot be manufactured into water-soluble
 - Any alteration to CoQ₁₀ structure to increase water solubility means the molecule is no longer CoQ₁₀

Poorly absorbed in the GI tract

- Needs to be consumed with lipid-rich foods to aid in absorption
 - Vegetarian diets may be deficient to maintain CoQ₁₀

Issues with CoQ₁₀ Bioavailability

CoQ₁₀ can only be absorbed in GI tract as individual molecules

- Uptake pathway begins with emulsification and micelle formation with fatty components of food
- Raw CoQ₁₀ is manufactured as crystals and cannot be absorbed in that state
 - Crystals must be dissociated into individual molecules
- Not all CoQ₁₀ manufacturers have demonstrated that they have achieved this dissociation
- Without crystal dispersion to individual molecules, bioavailability reduced to 75%

3

Urolithin A

- Singh A., et al. Euro J Clin Nutr. 2022.
- Andreux PA, et al. Nature Metabolism. 2019.
- Liu S et al. JAMA Network Open. 2022
- Singh A, et al. Cell Rep Med. 2022

What is Urolithin A?

- A naturally occurring postbiotic produced by gut microbiome after eating certain precursor foods
- Precursors = ellagitannins
 - Pomegranates, berries & nuts

Natural Urolithin A Production

Does occur

because the gut transforms ellagitannins into urolithins, hence why urolithin A is a post-biotic.

However...

... only 30-40% people produce Urolithin A in meaningful quantities after eating ellagitannins.

Why should we care about Urolithin A?

Stimulates mitophagy process

 Dysfunctional mitochondria are recycled & repackaged into new, healthy mitochondria

Supplementation with Urolithin A in humans has shown:

A way to circumvent the issue of ellagitannin bioavailability and provide 6x more urolithin A into the blood stream than pomegranate juice consumption

Supplementation with Urolithin A in humans has shown:

Mitochondrial gene expression similar to aerobic exercise regimens

Heatmap represents genes that are the most significantly changed by the treatment within the GO_MITOCHONDRION genset

Supplementation with Urolithin A in humans has shown:

- Increased muscle endurance up to 17% (leg) and 26% (hand) after 8 weeks in older adults
- Increased muscle strength (leg) by up to 21% after 16 weeks in middle-age adults

Change in muscle endurance | Hand

Supplementing with Urolithin A

500mg per day

No upper limit established Plateau of benefits seen at 1000mg per day

Should be taken at consistent time of day

Can be morning, afternoon, or night

Can be taken fasted or fed

Soft gel, food extract powders, protein powder

Nutritional Options for Mitochondrial Bioenergetics

	Biogenesis	Energy Production	Mitophagy
Pathways to Target	Creation of new mitochondria	Optimal functioning of mature mitochondria	Clearance of damaged mitochondria
Nutrition-Based Bioactives	Urolithin A NMN	CoQ10	Urolithin A

Conclusion

Thank you!